232 research outputs found

    AA--Dependence of ΛΛ\Lambda\Lambda Bond Energies in Double---Λ\Lambda Hypernuclei

    Full text link
    The AA-dependence of the bond energy ΔBΛΛ\Delta B_{\Lambda\Lambda} of the ΛΛ{\Lambda\Lambda} hypernuclear ground states is calculated in a three-body Λ+Λ+AZ{\Lambda + \Lambda + {^{A}Z}} model and in the Skyrme-Hartree-Fock approach. Various ΛΛ{\Lambda\Lambda} and Λ\Lambda-nucleus or ΛN{\Lambda N} potentials are used and the sensitivity of ΔBΛΛ\Delta B_{\Lambda\Lambda} to the interactions is discussed. It is shown that in medium and heavy ΛΛ{\Lambda\Lambda} hypernuclei, ΔBΛΛ\Delta B_{\Lambda\Lambda} is a linear function of rΛ3r_{\Lambda}^{-3}, where rΛr_\Lambda is rms radius of the hyperon orbital. It looks unlikely that it will be possible to extract ΛΛ{\Lambda\Lambda} interaction from the double-Λ\Lambda hypernuclear energies only, the additional information about the Λ\Lambda-core interaction, in particular, on rΛr_{\Lambda} is needed.Comment: 11 pages, LaTex, 3 figure

    Not just another genome

    Get PDF
    Sequence analysis of the Daphnia pulex genome holds some surprises that could not have been anticipated from what was learned so far from other arthropod genomes. It establishes Daphnia as an eco-genetical model organism par excellence

    Cloning and sequence analysis of cDNAs encoding the cytosolic precursors of subunits GapA and GapB of chloroplast glyceraldehyde-3-phosphate dehydrogenase from pea and spinach

    Get PDF
    Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is composed of two different subunits, GapA and GapB. cDNA clones containing the entire coding sequences of the cytosolic precursors for GapA from pea and for GapB from pea and spinach have been identified, sequenced and the derived amino acid sequences have been compared to the corresponding sequences from tobacco, maize and mustard. These comparisons show that GapB differs from GapA in about 20% of its amino acid residues and by the presence of a flexible and negatively charged C-terminal extension, possibly responsible for the observed association of the enzyme with chloroplast envelopes in vitro. This C-terminal extension (29 or 30 residues) may be susceptible to proteolytic cleavage thereby leading to a conversion of chloroplast GAPDH isoenzyme I into isoenzyme II. Evolutionary rate comparisons at the amino acid sequence level show that chloroplast GapA and GapB evolve roughly two-fold slower than their cytosolic counterpart GapC. GapA and GapB transit peptides evolve about 10 times faster than the corresponding mature subunits. They are relatively long (68 and 83 residues for pea GapA and spinach GapB respectively) and share a similar amino acid framework with other chloroplast transit peptides

    Search for Exotic Strange Quark Matter in High Energy Nuclear Reactions

    Full text link
    We report on a search for metastable positively and negatively charged states of strange quark matter in Au+Pb reactions at 11.6 A GeV/c in experiment E864. We have sampled approximately six billion 10% most central Au+Pb interactions and have observed no strangelet states (baryon number A < 100 droplets of strange quark matter). We thus set upper limits on the production of these exotic states at the level of 1-6 x 10^{-8} per central collision. These limits are the best and most model independent for this colliding system. We discuss the implications of our results on strangelet production mechanisms, and also on the stability question of strange quark matter.Comment: 21 pages, 9 figures, to be published in Nuclear Physics A (Carl Dover memorial edition

    Heterogeneity and organization of the ribosomal RNA genes of Cucurbita maxima

    Full text link
    Thirty-six clones were recovered from Cucurbita maxima genomic DNA which had been enriched for rDNA and cleaved at the unique repeat unit Hin d III site. Twenty-nine of these, which contain complete rDNA units, were compared to a standard whose intergenic spacer (IGS) nucleotide sequence has been determined. Twenty-one are identical in length and restriction site pattern. Eight which differ from the standard in length do so because of addition or deletion of varying numbers of IGS subrepetitive units of two different classes, with four of the length variants being different in both of these classes. Seven clones were isolated which contain incomplete repeat units, six of which are composites of rDNA and non-rDNA material. They have been cleaved at the unique rDNA Hin d III site at one end and at a non-rDNA Hin d III site at the other. We consider it most likely that these are derived from the termini of repeat unit tandem arrays, although other explanations are possible. Twelve individual plants of two different cultivars were examined for heterogeneity of IGS length distribution. They all appear to be identical in this regard.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43423/1/11103_2004_Article_BF00019390.pd

    Evaluation of intra- and interspecific divergence of satellite DNA sequences by nucleotide frequency calculation and pairwise sequence comparison

    Get PDF
    Satellite DNA sequences are known to be highly variable and to have been subjected to concerted evolution that homogenizes member sequences within species. We have analyzed the mode of evolution of satellite DNA sequences in four fishes from the genus Diplodus by calculating the nucleotide frequency of the sequence array and the phylogenetic distances between member sequences. Calculation of nucleotide frequency and pairwise sequence comparison enabled us to characterize the divergence among member sequences in this satellite DNA family. The results suggest that the evolutionary rate of satellite DNA in D. bellottii is about two-fold greater than the average of the other three fishes, and that the sequence homogenization event occurred in D. puntazzo more recently than in the others. The procedures described here are effective to characterize mode of evolution of satellite DNA

    The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays

    Get PDF
    Background: Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates.Results: We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution.Conclusions: We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution

    Структура вірусних діарей у дітей на Сумщині

    Get PDF
    Гострі кишкові інфекції (ГКІ) стійко посідають одне з провідних місць серед усіх інфекційних захворювань, характеризуються широкою поширеністю, високою частотою розвитку тяжких форм і ускладнень. Прогрес у галузі лабораторних методів діагностики дозволив істотно розширити уявлення про етіологічні чинники хвороби: у країнах, що розвиваються, домінують діарейні інфекції бактерійної етіології, а в економічно розвинених країнах - вірусної. При цитуванні документа, використовуйте посилання http://essuir.sumdu.edu.ua/handle/123456789/3228

    Incomplete homogenization of 18 S ribosomal DNA coding regions in Arabidopsis thaliana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As a result of concerted evolution, coding regions of ribosomal DNA sequences are highly conserved within species and variation is generally thought to be limited to a few nucleotides. However, rDNA sequence variation has not been systematically examined in plant genomes, including that of the model plant <it>Arabidopsis thaliana </it>whose genome was the first to be sequenced.</p> <p>Findings</p> <p>Both genomic and transcribed 18 S sequences were sampled and revealed that most deviation from the consensus sequence was limited to single nucleotide substitutions except for a variant with a 270 bp deletion from position 456 to 725 in <it>Arabidopsis </it>numbering. The deletion maps to the functionally important and highly conserved 530 loop or helix18 in the structure of <it>E. coli </it>16 S. The expression of the deletion variant is tightly controlled during developmental growth stages. Transcripts were not detectable in young seedlings but could be amplified from RNA extracts of mature leaves, stems, flowers and roots of <it>Arabidopsis thaliana </it>ecotype Columbia. We also show polymorphism for the deletion variant among four <it>Arabidopsis </it>ecotypes examined.</p> <p>Conclusion</p> <p>Despite a strong purifying selection that might be expected against functionally impaired rDNAs, the newly identified variant is maintained in the <it>Arabidopsis </it>genome. The expression of the variant and the polymorphism displayed by <it>Arabidopsis </it>ecotypes suggest a transition state in concerted evolution.</p
    corecore